
non-coding 

RNA

Review

A Survey of Current Resources to Study lncRNA-Protein
Interactions

Melcy Philip 1 , Tyrone Chen 1 and Sonika Tyagi 1,2,3,*

����������
�������

Citation: Philip, M.; Chen, T.; Tyagi,

S. A Survey of Current Resources to

Study lncRNA-Protein Interactions.

Non-coding RNA 2021, 7, 33. https://

doi.org/10.3390/ncrna7020033

Academic Editor: Y-h. Taguchi

Received: 3 May 2021

Accepted: 7 June 2021

Published: 8 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC 3800, Australia;
melcy.p.j@gmail.com (M.P.); Tyrone.Chen@monash.edu (T.C.)

2 Monash eResearch Centre, Monash University, Clayton, VIC 3800, Australia
3 Department of Infectious Disease, Monash University (Alfred Campus), 85 Commercial Road,

Melbourne, VIC 3004, Australia
* Correspondence: sonika.tyagi@monash.edu

Abstract: Phenotypes are driven by regulated gene expression, which in turn are mediated by
complex interactions between diverse biological molecules. Protein–DNA interactions such as
histone and transcription factor binding are well studied, along with RNA–RNA interactions in short
RNA silencing of genes. In contrast, lncRNA-protein interaction (LPI) mechanisms are comparatively
unknown, likely directed by the difficulties in studying LPI. However, LPI are emerging as key
interactions in epigenetic mechanisms, playing a role in development and disease. Their importance
is further highlighted by their conservation across kingdoms. Hence, interest in LPI research is
increasing. We therefore review the current state of the art in lncRNA-protein interactions. We
specifically surveyed recent computational methods and databases which researchers can exploit
for LPI investigation. We discovered that algorithm development is heavily reliant on a few generic
databases containing curated LPI information. Additionally, these databases house information
at gene-level as opposed to transcript-level annotations. We show that early methods predict LPI
using molecular docking, have limited scope and are slow, creating a data processing bottleneck.
Recently, machine learning has become the strategy of choice in LPI prediction, likely due to the
rapid growth in machine learning infrastructure and expertise. While many of these methods have
notable limitations, machine learning is expected to be the basis of modern LPI prediction algorithms.

Keywords: LPI; lncRNA; ncRNA; protein; transcriptomics; molecular docking; machine learning;
deep learning; databases

1. Introduction

Transcriptomics is the study of a complete set of RNA transcripts in a cell, measuring
variable expression levels of the genome under different conditions. Modern transcrip-
tomics is performed with high-throughput sequencing to investigate the function of genes
and biological pathways, commonly with bioinformatics methods applying differential
gene expression analyses, splice site identification, transcript variant identification or de-
termining alternative promoter usage for protein-coding transcripts [1]. However, these
protein-coding transcripts only represent a small proportion of the transcriptome. A large
proportion of the genome generates RNA transcripts which do not directly code for protein
products [2]. These non-coding RNA (ncRNA) transcripts have been known to exist, but
their properties make them difficult to characterise as compared to the coding transcripts.
ncRNA can be divided into multiple categories based on function and length [3]. In this
review, we specifically consider the long non-coding RNA (lncRNA) category of ncRNA
and their interaction with proteins, an important functional mechanism of lncRNA.

LncRNA are very broadly defined as RNA transcripts exceeding 200 nucleotides (nt)
in length without coding potential. Their length varies widely, ranging from hundreds to
thousands of nucleotides [4]. LncRNA can act as gene regulators, and like other epigenetic
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mechanisms are involved in numerous biological processes. They achieve their regulatory
function with their ability to interact with a wide range of biological molecules, such as
other nucleic acids and proteins [5], as well as with small molecules [4]. Among their
more direct modes of action are sequestering and releasing transcripts to modulate gene
expression, stabilising transcripts and binding to DNA to sterically hinder transcription
initiation [6]. More indirectly, they can recruit proteins and other molecules to form a
functional complex, or act as a scaffold for targeted chromatin formation [7].

An important layer of lncRNA-mediated gene regulation is LPI (lncRNA-protein
interactions). We illustrate the importance of LPI in developmental and abiotic stress
pathways with several examples encompassing multiple distinct species. In Drosophila
melanogaster, regulatory networks mediated by LPI regulate key eye development [8] and
dosage compensation pathways [9] mediated by RNA-binding proteins. In the plant Ara-
bidopsis thaliana, LPI control alternative splicing within the nucleus by selectively displacing
existing transcripts and subsequently altering root development [10,11]. Response to abi-
otic stress is also governed by LPI, as shown by an lncRNA recruiting histone methylases
to suppress Arabidopsis thaliana flowering during cold conditions [12]. Dario renio LPI
are also observed to interface with transcription factors and other RNA-binding proteins
during embryonic development, although their exact mechanism of action is not well
known [13]. LPI also act as mediators of other epigenetic mechanisms, for instance as
chromatin scaffolds to organise the three-dimensional structure of the genome in Mus
musculus [14].

Due to the widespread involvement of LPI in epigenetics, dysregulation of certain LPI
contributes to disease states, particularly cancers. Severity of a human pancreatic cancer
phenotype is driven by an lncRNA-protein complex, which triggers a positive feedback
loop of protein overexpression leading to poor patient outcomes [15]. Similarly, formation
of an lncRNA-protein complex is associated with poorer prognosis in breast cancer [16],
colon cancer [16] and lymphoma [17] by blocking phosphorylation sites, stabilising other
epigenetic factors and through an unknown mechanism, respectively. Infectious diseases
are also associated with LPI dysregulation, including COVID-19 [18,19]. A more exhaustive
list of known LPI–disease associations is available at the LncTarD database [20]. Despite
the wealth of information on LPI–disease associations, their precise mechanism of action
remains unknown. Therefore, insight into LPI will be valuable in complex disease research,
potentially resulting in improved diagnosis and treatment procedures.

Multiple high-throughput laboratory assays were developed to investigate LPI, some
of which will be briefly discussed in this review article. However, exhaustively performing
an experimental validation for each individual LPI is not practical given their volume and
variety. Hence, computational methods are necessary to screen these high-throughput
assays for potential LPI which can then be subsequently experimentally validated, similar
to transcriptomics workflows for conventional protein-coding RNA [21]. A variety of these
computational LPI predictors exist, each applying different strategies to achieve their goals,
and are dependent on a few biological databases containing subsets of experimentally
validated LPI. In this review, we will discuss recent bioinformatics resources for studying
LPI, with an emphasis on software and databases, together with their advantages as well
as limitations.

2. LPI Laboratory Assays

Because of the biological importance of LPI, many laboratory assays were developed
to identify these interactions. Two general categories of such assays exist, protein-centric
assays and RNA-centric assays, which can capture either the cellular environment of a
living cell or extracted biological material [22]. Protein-centric assays target the protein
component of a LPI, while RNA-centric assays target the lncRNA component. Each method
varies in sensitivity and specificity, has different prerequisites and has unique advantages
as well as disadvantages. Comprehensively comparing and contrasting these laboratory
assays is out of the scope of this review, but we provide a high-level overview only to



Non-coding RNA 2021, 7, 33 3 of 20

give the computational methods discussed in this article some biological context. A more
detailed overview of these assays can be found in a separate review article [22].

To discover proteins bound to RNA of interest (RNA-centric methods), IVT (in vitro-
transcribed) RNA can be tagged with biotin, and selectively bound to streptavidin for
purification [23]. RaPID (RNA–protein interaction detection) [24] operates in a conceptually
similar way to the previous method. IVT RNA can also be tagged with dyes and bound to
protein microarrays, with fluorescence providing a quantitative output [25]. In vivo, cross-
linking RNA with protein, either through formaldehyde or UV light, is used to identify
LPI by purifying and extracting the RNA-bound proteins. CHART (capture hybridisation
analysis of RNA targets) [26], ChIRP (chromatin isolation by RNA purification and capture
hybridisation analysis of RNA targets) [27], MS2-BioTRAP (MS2 in vivo biotin-tagged
RAP) [28], PAIR (peptide nucleic acid-assisted identification of RBPs) [29], RAP (RNA
affinity purification) [30] and TRIP (tandem RNA isolation procedure) [31] all use either of
these cross-linking strategies.

To discover RNA bound to proteins of interest (protein-centric methods), exploiting
cross-linking is also common. The largest group of protein-centric methods are CLIP
(cross-linking immunoprecipitation)-based methods [32]. Many variants of CLIP methods
exist [33], and when paired with high-throughput sequencing are capable of generating
libraries of data for further analysis. RIP-seq (RNA immunoprecipitation) [34] and TRIBE
(targets of RNA-binding proteins identified by editing) [35] also belong to this category of
protein-centric methods.

3. lncRNA-Protein Resource Databases

Starbase [36], POSTAR [37], RAIN [38], RNAInter [39], NPInter [40], ATtRACT [41]
and oRNAment [42] are examples of databases that contain information associated with
lncRNA-protein interactions obtained by the previously discussed laboratory assays, com-
putational analysis and literature mining. Two broad classes exist: databases containing
curated lncRNA-protein interactions and databases containing RNA-binding motifs.

Starbase, RNAInter, POSTAR, NPInter and RAIN all contain details of curated
lncRNA-protein interactions, and many additional attributes (including functional an-
notation) associated with the interactions, derived from a combination of the laboratory
assays discussed in the previous section (Table S1). These are not limited exclusively to
lncRNA, and contain various other pieces of interaction information, including interactions
with other ncRNA, other nucleic acids and proteins [43–45]. Some contrasts between these
databases are also observable from a species, usability and scope perspective, which will
be discussed here. Starbase, POSTAR and RAIN contain LPI information from a small
number (two to four) of species, while RNAInter and NPInter host a wide range of species.
To improve usability, Starbase, RNAInter and RAIN feature third party tool integration to
streamline bioinformatics workflows. In terms of scope, POSTAR and NPInter appear to be
focused on disease phenotypes, providing disease association information, while Starbase,
RNAInter and RAIN have a more generic focus.

ATtRACT and oRNAment databases contain details of RBP (RNA-binding protein)
motifs. While not directly containing LPI, these can be applied to predict putative LPI and
are a useful starting point or supplementary tool in screening for LPI.

To provide a guide for the community on database selection, we generated a recom-
mendation matrix (Table S2). We considered five lncRNAs, namely NEAT1, MALAT1
and Hotair (well studied) versus Lassie and MaTAR25 (less explored). We discovered
that Starbase is an exclusive database which provides MALAT1–protein interactions with
the CLIP-seq evidence, whereas POSTAR2 provides RNA- and RBP-centric interactome
information for the well-examined lncRNAs. Similarly, RAIN provides RNA–protein inter-
action details and networks using STRING for NEAT1, MALAT1 and HOTAIR. RNAInter
provides information associated with interacting molecules, RNA editing, RNA structure,
RNA localisation, RNA modification, evidence support (experimental evidence) and ref-
erences, interaction networks (the top 100 interactions) and dynamic expression for the
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major lncRNAs. NPInter integrates NONCODE and ENSEMBL data to document and
annotate the available information for NEAT1, MALAT1 and HOTAIR while ATtRACT
is an RBP-centric database (keyword should be a RBP) that provides the RBP details and
associated motifs. oRNAment consists of detailed information on transcripts and RBP
along with numerous downloadable graphical representations of the noted lncRNAs with
multiple visualisation options. However, none of these databases include any information
on emerging lncRNAs such as Lassie and MaTAR25, further highlighting the reliance of
the community on these databases.

All databases feature at least mouse and human datasets, likely due to their status
as model organisms relevant to human disease, although some incorporate other model
organisms as well. It is interesting to note that all databases feature advanced querying and
search functions, likely reflecting the volume and complexity of LPI data. We have reviewed
and compared them in Table S1. In summary, we discovered that there is a surprising lack
of specialised LPI databases, with most databases featuring combinations of other nucleic
acid and protein combinations. The biggest limitation of the current databases is that the
LPI data are available only at a gene level and not a transcript level, lowering the resolution
of LPI discovery methods which use these data. In a separate (unpublished) study we
demonstrated that different isoforms of a lncRNA genes can have different interactomes,
and hence functions. We are also developing machine learning methods to annotate
lncRNAs at the transcript level (https://bioinformaticslab.erc.monash.edu/linc2function
accessed on 27 May 2021).

4. LPI Prediction Algorithms

Most LPI prediction algorithms exploit these curated databases of prior LPI knowl-
edge to tune their predictions. Computational strategies for LPI prediction can be divided
into two high-level categories, molecular docking and machine learning. Lower-level
subdivisions among the methods we surveyed are visualised in Figure 1, and include deep
learning, tree-based methods, graph-based methods, similarity networks, image segmenta-
tion, matrix factorisation and variants of the Fourier transform. Conventional molecular
docking methods operate by finding the optimal configuration of an lncRNA-protein com-
plex, and ranking the highest scoring configurations for further evaluation. Within the past
decade, a large number of prediction algorithms based on machine learning have emerged.
Most machine learning methods do not involve molecular docking simulations. Instead,
they exploit known interactions between lncRNA and protein and/or biomolecular se-
quence information directly, although many also leverage known secondary structures to
improve their performance table [1,2]. As with the LPI databases, it is worth noting that
none of these methods are tuned specifically for LPI prediction, and represent broader
scopes of identifying combinations of nucleic acid–protein interaction.

4.1. Molecular Docking Approaches

Before the current ecosystem of machine learning algorithms was established, molecu-
lar docking was the dominant strategy used to predict and investigate LPI or RNA–protein
interactions in general. By developing custom equations, which account for conformation
and other steric properties, the likelihood of lncRNA-protein complex formation is scored.
Low-level methodology does not vary significantly, with most methods applying a variant
of the FFT (fast Fourier transform) to extract features from three-dimensional molecule
representations, template or optimising for a minimal energy state. Key factors considered
include docking pose, distance and area of interracial sites, energy-based criteria and
selection of the most structurally conserved docked complex [46]. Several methods also
account for sequence homology or electrical charge between biological molecules [47].
Hierarchical clustering to group complexes of interest is not uncommon. However, at a
high level these strategies are applied in different ways, and on different steric features. In
many cases, a set of parameters must be specified by the user.

https://bioinformaticslab.erc.monash.edu/linc2function
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Figure 1. Visualisation of the broad categories of strategies used for predicting lncRNA-protein interactions. (a) Machine
learning, (b) deep learning, (c) ensemble learning, (d) matrix factorisation, (e) similarity network analysis, (f) graph theory,
(g) segmentation, (h) Fourier transform (in lncRNA-protein molecular docking simulations) and (i) hierarchical clustering.
Training data are commonly higher-level features (e.g., structure, orientation) of lncRNA and proteins as well as the
sequences recoded into tensors of varying dimensions.

Most of the molecular docking methods we reviewed use methods which incorporate
at least two of the previously discussed low-level methodologies (Table 1). To provide
some context for the building blocks of these more complex methods, we first present ex-
amples of methods that use an individual strategy together with a brief discussion of their
advantages and disadvantages, which include 3dRPC [48], HexServer [49], FireDOCK [50],
HADDOCK [51] and PatchDOCK [52]. HexServer and 3dRPC are FFT-based methods, and
3dRPC is effective on well-characterised molecules only. By exploiting the fact that LPI
complexes have looser packing, 3dRPC implements FFT on geometric complementarity as
well as electrostatics with a custom scoring function. HexServer uses an FFT-based algo-
rithm to exploit shape complementarity as a feature for optimisation. Its key advantage is
its reformulation of the conventional 3D search space to greatly boost the speed of the FFT,
achieving results in seconds. Meanwhile, FireDOCK and HADDOCK optimise the mini-
mum free energy of the lncRNA-protein complex. While FireDOCK focuses on exploiting
side chain information, HADDOCK leverages ambiguous interaction restraints, and is one
of the few methods which has the advantage of being applicable to multi-body problems
as well as other biomolecular interactions. Among molecular docking tools, PatchDOCK
takes a more unconventional strategy by summarising low-level geometric features into
higher-level features, and has some conceptual similarities to image segmentation. It is
interesting to note that FireDOCK and PatchDOCK both complement each other, where
PatchDOCK can feed output directly into FireDOCK.
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Table 1. A comparison of molecular docking tools used to predict lncRNA-protein interactions. Important attributes of
these molecular docking tools, including their effectiveness and a link to their corresponding server, are listed (all weblinks
are accessed on 27 May 2021).

Sl:No Resource Resource Type Advantages and
Disadvantages Weblink Reference Paper

1 P3DOCK

lncRNA-protein docking
server (adapted from
conventional docking

servers)

Free docking and
template-based docking

strategies in a hybrid
approach, results in an
accurate classification

http://www.
rnabinding.com/

P3DOCK/P3
DOCK.html

[55]

2 HDOCK

lncRNA-protein docking
server (adapted from
conventional docking

servers)

Integrates template-based
modelling as well as ab initio

free docking, with a scope
that extends to both proteins

and nucleic acids

http://hdock.
phys.hust.edu.cn [53]

3 PATCHDOCK

lncRNA-protein docking
server (adapted from
conventional docking

servers)

Low-level geometric features
into higher-level features,

FireDOCK and PatchDOCK
both complement each other,
where PatchDOCK can feed

output directly into
FireDOCK.

https:
//bioinfo3d.cs.tau.
ac.il/PatchDock/

/

[52]

4 FIREDOCK

lncRNA-protein docking
server (adapted from
conventional docking

servers)

Focuses on exploiting side
chain information, optimises
the minimum free energy of
the lncRNA-protein complex

http:
//bioinfo3d.cs.tau.
ac.il/FireDock/ /

[50]

5 NPDOCK

Exclusively
lncRNA-protein docking

server, developed for
nucleic acid docking

only

Chains multiple methods into
a pipeline of tools, which

implement mostly FFT-based
methods.

http://genesilico.
pl/NPDock / [56]

6 HADDOCK

lncRNA-protein docking
server (adapted from
conventional docking

servers)

It averages ambiguous
interaction restraints, and it
can generalise to multi-body

problems as well as other
biomolecular interactions,

optimises the minimum free
energy of the lncRNA-protein

complex

https://wenmr.
science.uu.nl/
haddock2.4/

[51]

7 MPRDOCK

lncRNA-protein docking
server (adapted from
conventional docking

servers)

Implies protein flexibility by
applying FFT and considering

sequence homology of the
target of interest to generate a

repertoire of structures for
“ensemble docking”

http://huanglab.
phys.hust.edu.cn/

mprdock/
[54]

8 Hexserver

lncRNA-protein docking
server (adapted from
conventional docking

servers)

FFT-based algorithm to
exploit shape

complementarity as a feature
for optimisation

http://hexserver.
loria.fr/ [49]

Methods implementing a mixture of these strategies include HDOCK [53], MPRDOCK [54],
P3DOCK [55] and NPDOCK [56]. HDOCK integrates template-based modelling as well as
ab initio docking, with a scope that extends to both proteins and nucleic acids. In addition,
the user may specify binding sites of interest directly. MPRDOCK exploits protein flexibility
by applying FFT and considering sequence homology of the target of interest to generate
a repertoire of structures for “ensemble docking”. We note that in this specific context of

http://www.rnabinding.com/P3DOCK/P3DOCK.html
http://www.rnabinding.com/P3DOCK/P3DOCK.html
http://www.rnabinding.com/P3DOCK/P3DOCK.html
http://www.rnabinding.com/P3DOCK/P3DOCK.html
http://hdock.phys.hust.edu.cn
http://hdock.phys.hust.edu.cn
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
http://genesilico.pl/NPDock
http://genesilico.pl/NPDock
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
http://huanglab.phys.hust.edu.cn/mprdock/
http://huanglab.phys.hust.edu.cn/mprdock/
http://huanglab.phys.hust.edu.cn/mprdock/
http://hexserver.loria.fr/
http://hexserver.loria.fr/
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MPRDOCK, “ensemble docking” refers to the library of proteins generated by MPRDOCK,
and is distinct from “ensemble learning” in the machine learning approaches section where
the outputs of multiple algorithms are aggregated to obtain a result. P3DOCK integrates
the previously discussed 3dRPC, as PRIME that leverages sequence as well as structural
homology in addition to the features used by 3dRPC. P3DOCK’s authors claim that by
complementing free docking and template-based docking strategies in a hybrid approach,
a more accurate classification is possible. Finally, NPDOCK does not use a hybrid or
ensemble strategy, but chains multiple methods into a pipeline of tools, which implement
mostly FFT-based methods. The main advantage of using such ensemble methods is a
generally improved performance over single-strategy methods as the limitations of each
individual method are complemented.

With the exception of one or two methods such as HexServer, many of these algo-
rithms are computationally expensive and time-consuming (hours to days of real time) to
run. Some methods, such as HexServer, require advanced hardware such as GPUs and
specialised software engineering tools. Biological molecules are complex and dynamic,
with their wide range of possible conformations as well as orientations greatly increasing
the search space for algorithms. The molecular docking community is mindful of this, and
provides their software on publicly accessible and user-friendly web servers for users to
run these programs remotely, although time remains a bottleneck for these workflows.

4.2. Machine Learning Approaches

Most modern lncRNA-protein interaction (LPI) prediction algorithms use machine
learning, where large datasets with attributes of interest are passed to an algorithm (Table 2).
The algorithm then “learns” from the data, discovering patterns in the data with minimal
human intervention such as user-defined equations, a process known as “training”. In the
case of LPI, known LPI and their corresponding sequences as well as structures are used for
training the prediction models. Their strategies can be divided into several broad categories,
including graph methods, ensemble learning, matrix factorisation and deep learning. Of
these strategies, matrix factorisation appears to be the most popular and is integrated into
many other higher-level strategies. LPI are commonly formulated as similarity matrices,
which can then be easily formulated as a matrix factorisation problem. Broader strategies
incorporating matrix factorisation, such as ensemble learning and methods which leverage
multimodal data, appear to have consistently robust performance [57]. Few deep learning
models exist, but they both perform and generalise well in comparison to other methods,
and are likely to become more popular as they have become in other areas of biology.
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Table 2. A comparison of machine learning algorithms used to predict lncRNA-protein interactions. Important attributes of these machine learning algorithms, including their scope,
strategies, training data, effectiveness and reproducibility are listed. More than half of these methods are not reproducible as their source code is proprietary or not available. A few
methods provide web interfaces for users to enter their own data (all weblinks are accessed on 27 May 2021).

Sl:no Resource Scope Advantages and
Disadvantages Strategy Problem

Formulation
Model Training

Data Weblink/Source Code Reference
Paper

1

LPI-FKLKRR
(lncRNA-protein interaction

kernel ridge regression,
based on fast kernel

learning)

Prediction

Effective in
datasets with
imbalanced

classes.

Kernel ridge
regression

Similarity
matrices

formulated as
kernels

lncRNA-protein
interactions,

lncRNA
expression,

protein ontology,
lncRNA sequence,
protein sequence

https://github.com/
6gbluewind/LPI_FKLKRR [58]

2

LPI-KTASLP (prediction of
lncRNA-protein interaction

by semi-supervised link
learning with multivariate

information)

Prediction,
discovery

Effective in
datasets with
imbalanced

classes.

Multiple kernel
learning

Similarity
matrices

formulated as
kernels

lncRNA-protein
interactions,

lncRNA
expression,

lncRNA sequence

https://github.com/
6gbluewind/LPI_KTASLP [59]

3

LPI-NRLMF
(lncRNA-protein interaction

prediction by
neighbourhood regularised
logistic matrix factorisation)

Prediction,
discovery

Prediction bias is
expected due to

the sparsity of the
training dataset.

Matrix
factorisation

Similarity
matrices

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

NA [60]

4

LPI-INBRA (long
non-coding RNA–protein

interaction prediction based
on improved bipartite
network recommender

algorithm)

Prediction Robust against
false positives.

Matrix
factorisation

Similarity
matrices

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

NA [61]

5

LPI-BNPRA (long
non-coding RNA–protein

interaction bipartite
network projection

recommended algorithm)

Prediction

Effective in
humans and

closely related
species.

Bipartite network
recommendation

Similarity
matrices

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

NA [62]

https://github.com/6gbluewind/LPI_FKLKRR
https://github.com/6gbluewind/LPI_FKLKRR
https://github.com/6gbluewind/LPI_KTASLP
https://github.com/6gbluewind/LPI_KTASLP
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Table 2. Cont.

Sl:no Resource Scope Advantages and
Disadvantages Strategy Problem

Formulation
Model Training

Data Weblink/Source Code Reference
Paper

6 PBLPI (path-based
lncRNA-protein interaction)

Prediction,
discovery

Prediction
accuracy limited
due to technical

limitations.

Graph Similarity
matrices

lncRNA-protein
interactions,

protein semantic
similarity, lncRNA

functional
similarity,
Gaussian

interaction profile
kernel similarity,

integrated
similarity for
lncRNAs and

proteins

NA [63]

7

PLPIHS (predicting
lncRNA-protein

interactions using HeteSim
scores)

Prediction,
discovery

Performance is
improved by
preserving
information

regarding the
biological

network, taking
into account

lncRNA-protein
interactions

similar to the
target.

Graph Similarity
matrices

Co-expression
data of

lncRNA-protein
pairs,

lncRNA-protein
interaction data

NA [64]

8

IRWNRLPI (integrating
random walk and

neighbourhood regularised
logistic matrix factorisation

for lncRNA-protein
interaction prediction)

Prediction

Robust due to
hybrid approach,
but known to be

unstable.

Hybrid: random
walk,

neighbourhood
regularised

logistic matrix
factorisation

algorithm

Similarity
matrices

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

NA [65]
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Table 2. Cont.

Sl:no Resource Scope Advantages and
Disadvantages Strategy Problem

Formulation
Model Training

Data Weblink/Source Code Reference
Paper

9
SFPEL-LPI (sequence-based
feature projection ensemble

learning method)

Prediction,
discovery

Multimodal
approach boosts

prediction
accuracy.

Ensemble: graph
Laplacian

regularisation

Similarity
matrices

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

http://www.bioinfotech.cn/
SFPEL-LPI/ [66]

10
HLPI-Ensemble (human

lncRNA-protein
interactions ensemble)

Prediction Scope restricted to
humans.

Ensemble: support
vector machines
(SVM), random
forests (RF) and

extreme gradient
boosting (XGB)

Recoded feature
vectors

lncRNA-protein
interactions,

lncRNA sequence,
lncRNA features,
protein sequence,
protein features

NA [63]

11 GPLPI (graph predict
lncRNA-protein interaction) Prediction Scope restricted to

plants.

Deep learning,
ensemble learning,

graph attention
LSTM

autoencoder

Recoded
sequence and

structure vectors

lncRNA
sequences, protein

sequences,
structural features

from predicted
secondary

structures from
lncRNA and

protein sequences.

https:
//github.com/Mjwl/GPLPI [67]

12

LPI-BLS (predicting
lncRNA-protein

interactions with a broad
learning system-based

stacked ensemble classifier)

Prediction

Flat network
architecture boosts

speed and
accuracy. Effective
in several model

organisms.

Ensemble: broad
learning system

(flat neural
network)

Recoded feature
vectors

lncRNA-protein
interactions,

lncRNA sequence,
lncRNA features,
protein sequence,
protein features

https://github.com/NWPU-90
3PR/LPI_BLS [69]

http://www.bioinfotech.cn/SFPEL-LPI/
http://www.bioinfotech.cn/SFPEL-LPI/
https://github.com/Mjwl/GPLPI
https://github.com/Mjwl/GPLPI
https://github.com/NWPU-903PR/LPI_BLS
https://github.com/NWPU-903PR/LPI_BLS
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Table 2. Cont.

Sl:no Resource Scope Advantages and
Disadvantages Strategy Problem

Formulation
Model Training

Data Weblink/Source Code Reference
Paper

13

LPI-CNNCP
(lncRNA-protein

interactions convolutional
neural network

copy-padding trick)

Prediction

Can be extended
to predict other

biomolecular
interactions,

effective across
different species.

Deep learning
(convolutional

neural network)

Recoded feature
vectors

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

https://github.com/NWPU-90
3PR/LPI-CNNCP [71]

14
DeepLPI (deep

lncRNA-protein
interactions)

Prediction,
discovery

Can be extended
to other

biomolecular
interactions,

unique capability
to predict lncRNA

interaction with
different protein

isoforms.

Deep learning
(embedding,
convolution,

LSTM)

Recoded feature
tensors

lncRNA-protein
interactions,

lncRNA sequence,
lncRNA structure,
protein sequence,
protein structure

https:
//github.com/dls03/DeepLPI [72]

15
LPI-SKF (lncRNA-protein

interaction similarity kernel
fusion)

Prediction,
discovery

Aggregating
multiple

similarities
increases

robustness against
noise.

Similarity kernel
fusion, manifold

learning

Similarity
matrices

lncRNA-protein
interactions,

pairwise
similarities for

lncRNAs, pairwise
similarities for

proteins

https://github.com/zyk2118216
069/LPI-SKF [75]

16

PMKDN (projection-based
neighbourhood

non-negative matrix
decomposition model)

Prediction

Strategy avoids
overfitting and
sparsity issues,
allowing more

generalisability to
different datasets.

Neighbourhood
regularised matrix

factorisation
algorithm

Similarity
matrices

lncRNA-protein
interactions,

lncRNA sequence,
lncRNA

expression,
protein sequence,

protein annotation

NA [73]

https://github.com/NWPU-903PR/LPI-CNNCP
https://github.com/NWPU-903PR/LPI-CNNCP
https://github.com/dls03/DeepLPI
https://github.com/dls03/DeepLPI
https://github.com/zyk2118216069/LPI-SKF
https://github.com/zyk2118216069/LPI-SKF
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Table 2. Cont.

Sl:no Resource Scope Advantages and
Disadvantages Strategy Problem

Formulation
Model Training

Data Weblink/Source Code Reference
Paper

17 LPI-miRNA Prediction,
discovery

Can operate on
datasets without
prior knowledge

of lncRNA
interactions but
relies on known
miRNA–lncRNA

and
miRNA–protein

interactions.

Heterogeneous
network model

Similarity
matrices

lncRNA–miRNA
interactions,

protein–miRNAs
interactions

https://github.com/zyk2118216
069/LncRNA-protein-
interactions-prediction

[74]

18 lncPro Prediction

Training dataset
limited, effective

on short
sequences.

Fourier transform,
matrix

factorisation

Recoded feature
tensors

lncRNA-protein
interactions,

lncRNA sequence,
lncRNA features,
protein sequence,
protein features

http:
//cmbi.bjmu.edu.cn/lncpro/ [76]

19 catRAPID Prediction

Visualisation is
available,
prediction

accuracy may be
limited by reliance

on very old
lncRNA

annotations.

Discrete Fourier
transform

lncRNA and
protein

secondary
structure,
hydrogen

bonding, van
der Waals forces

NA http://s.tartaglialab.com/page/
catrapid_group [77]

https://github.com/zyk2118216069/LncRNA-protein-interactions-prediction
https://github.com/zyk2118216069/LncRNA-protein-interactions-prediction
https://github.com/zyk2118216069/LncRNA-protein-interactions-prediction
http://cmbi.bjmu.edu.cn/lncpro/
http://cmbi.bjmu.edu.cn/lncpro/
http://s.tartaglialab.com/page/catrapid_group
http://s.tartaglialab.com/page/catrapid_group
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Table 2. Cont.

Sl:no Resource Scope Advantages and
Disadvantages Strategy Problem

Formulation
Model Training

Data Weblink/Source Code Reference
Paper

20 3dRPC Prediction

Effective on
well-characterised

molecules, may
have lower

accuracy if this is
not the case.

Fast Fourier
transform, root

mean square
deviation

Conformations
of nucleotide-
amino-acid

pairs

NA http://biophy.hust.edu.cn/
3dRPC.html [48]

21 DeepBind Prediction

Effective,
generalisable

across species, but
more effective at

predicting
protein–DNA
binding than
protein–RNA

binding.

Deep learning
(convolutional

neural network)

Recoded feature
tensors

lncRNA-protein
interactions,

lncRNA sequence,
protein sequence

http://tools.genes.toronto.edu/
deepbind/ [70]

22 LPLNP Prediction,
discovery

Effective and
robust in humans,

capable of
discovering novel

interactions.

Ensemble: linear
neighbourhood

similarity

Similarity
matrices

lncRNA
expression,

lncRNA features
lncRNA-protein

interactions,
lncRNA sequence,
protein features,
protein sequence

https://github.com/
BioMedicalBigDataMiningLabWhu/

lncRNA-protein-interaction-
prediction

[68]

http://biophy.hust.edu.cn/3dRPC.html
http://biophy.hust.edu.cn/3dRPC.html
http://tools.genes.toronto.edu/deepbind/
http://tools.genes.toronto.edu/deepbind/
https://github.com/BioMedicalBigDataMiningLabWhu/lncRNA-protein-interaction-prediction
https://github.com/BioMedicalBigDataMiningLabWhu/lncRNA-protein-interaction-prediction
https://github.com/BioMedicalBigDataMiningLabWhu/lncRNA-protein-interaction-prediction
https://github.com/BioMedicalBigDataMiningLabWhu/lncRNA-protein-interaction-prediction
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Matrix factorisation is the most common way to formulate LPI for prediction al-
gorithms, including LPI-FKLKRR (lncRNA-protein interaction kernel ridge regression,
based on fast kernel learning) [58], LPI-KTASLP (prediction of lncRNA-protein interac-
tion by semi-supervised link learning with multivariate information) [59], LPI-NRLMF
(lncRNA-protein interaction prediction by neighbourhood regularised logistic matrix fac-
torisation) [60], LPI-INBRA (long non-coding RNA–protein interaction prediction based
on improved bipartite network recommender algorithm) [61] and LPI-BNPRA (long non-
coding RNA–protein interaction bipartite network projection recommended algorithm) [62].
These methods share a common theme of formulating lncRNA-protein interactions as a
matrix factorisation problem and using them in broader strategies, such as multiple kernel
learning or recommender algorithms. Known structural features are often used together
with sequence features. In the special case of LPI-FKLKRR, matrices are reformulated into
kernels for direct optimisation with kernel ridge regression, increasing performance in the
common scenario of class imbalance. Further comparing and contrasting the advantages
as well as disadvantages of these methods shows that LPI-FKLKRR and LPI-KTASLP are
expected to be effective in the case of imbalanced classes. In LPI-NRLMF, the authors note
a slight prediction bias may occur due to the sparsity of their training data. LPI-INBRA is
robust against false positives, and LPI-BNPRA is effective on closely related species other
than humans.

Some graph-based methods for LPI prediction are PBLPI (path-based lncRNA-protein
interaction) [63] and PLPIHS (predicting lncRNA-protein interactions using HeteSim
scores) [64]. PBLPI takes into account both functional and semantic similarity between
proteins, while PLPIHS uses a custom distance metric to unify co-expression, lncRNA-
protein interactions and protein–protein interaction scores to construct a network which is
then provided to a SVM classifier. In the case of PBLPI, a disadvantage is that prediction
accuracy may be reduced due to technical limitations, while in PLPIHS performance is
improved by preserving information regarding the biological network, taking into account
lncRNA-protein interactions similar to the target.

Examples of hybrid and ensemble learning approaches are IRWNRLPI (integrating
random walk and neighbourhood regularised logistic matrix factorisation for lncRNA-
protein interaction prediction) [65], SFPEL-LPI (sequence-based feature projection ensemble
learning method) [66], HLPI-Ensemble (human lncRNA-protein interactions ensemble) [63],
GPLPI (graph predict lncRNA-protein interaction) [67], LPLNP (linear neighbourhood
propagation method) [68] and LPI-BLS (predicting lncRNA-protein interactions with a
broad learning system-based stacked ensemble classifier) [69]. IRWNRPLI uses lncRNA-
protein interactions and lncRNA/protein sequence similarity as the input into a hybrid
approach of random walk and neighbourhood regularised logistic matrix factorisation.
Being an integrative model, it appears to be robust, although its accuracy varies on different
biological systems. Ensemble approaches PMKDN, SFPEL-LPI, HLPI-Ensemble, LPI-BLS
and LPLNP all have the advantage of being robust against noise due to their ensemble
strategy, incorporating multiple approaches, and are capable of discovering new LPI.
LPLNP and LPI-BLS in particular stand out: LPI-BLS for its unconventional flat network
architecture and aggregation strategy, as well as its effectiveness in multiple species, and
LPLNP for its unique application of neighbourhood similarity to LPI. However, we note
that HLPI-Ensemble is specifically intended for human LPI only. GPLPI uses both sequence
features and known secondary structures to train a graph-based neural network. In
addition, by using an ensemble of features including evolutionary information, GPLPI’s
effectiveness was increased. An important distinction between these two methods is
that GPLPI is trained on known plant lncRNA, and plant non-coding RNA have different
properties (some ncRNA lose function even with 1–2 nucleotide changes) to those of animal
non-coding RNA [70]. For this model to be effective on non-plant organisms, retraining
is likely necessary but viable due to the relatively higher volume of data associated with
animals, in particular humans [63].
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Only a few deep learning approaches exist: DeepBind [70], LPI-CNNCP (lncRNA-
protein interactions convolutional neural network copy-padding trick) [71] and DeepLPI
(deep lncRNA-protein interactions) [72]. DeepBind was one of the first applications of deep
learning to predict nucleic acid–protein binding, and is applicable to LPI. By reformulating
the classical position weight matrix [73] as a convolutional kernel, it operates on raw
sequence data to provide a simple prediction score for a nucleic acid–protein interaction [74].
LPI-CNNCP uses only lncRNA and protein sequence data recorded as k-mers as input
into a CNN but achieves good results. It is also interesting to note that it appears to be
one of the few models that are effective across different species, which is a less common
advantage. Meanwhile, DeepLPI feeds co-expression, sequence and structural data to
a neural network optimised by a conditional random field. Using isoform data makes
DeepLPI the only method to date with the ability to predict lncRNA interaction with
different protein isoforms. Furthermore, its flexibility allows it to be extended to other
biomolecular interactions, such as miRNA.

Other methods used to predict LPI that do not fall into a specific category include LPI-
SKF (lncRNA-protein interaction similarity kernel fusion) [75], PMKDN (projection-based
neighbourhood non-negative matrix decomposition model) [73] and LPI-MiRNA [74].
LPI-SKF uses an integrative approach where verified lncRNA-protein interactions are
used to build a network, and similarity kernel fusion is used to integrate protein and
lncRNA similarity scores before applying manifold learning. PMKDN uses multiple
features from lncRNA (nucleotide composition, expression levels) and protein (amino acid
subcategories) to build a similarity matrix for similarity network fusion with a nearest
neighbour’s approach. Both these methods have the advantages of being robust against
noise and capable of interaction discovery, but like most methods that express LPI as
similarity matrices, they make a strong assumption that sequence homology correlates
with interactivity, which may not hold in all cases. LPI-MiRNA takes a unique approach,
exploiting miRNA as an intermediate unit of lncRNA-protein binding, and uses this in a
network-based approach. While this gives LPI-MiRNA the ability to operate on datasets
without prior knowledge of lncRNA interactions, a different limitation is introduced of
relying on known miRNA–lncRNA and miRNA–protein interactions. An assumption is
also made that miRNAs which interact with both lncRNA and a protein would also form
LPI, which may not always hold. Nevertheless, this method was shown to be effective.

Although lncPro [76] and catRAPID [77] are older methods, these are featured in this
manuscript because of their historical significance. lncPro was one of the first published
machine learning LPI prediction algorithms, and many LPI algorithms resemble it. Higher-
level features are extracted from lncRNA and protein sequence, which are then recorded as
vectors as input into their model. Although the authors noted limitations associated with
data availability and computational complexity at the time, this method became a template
for many other machine learning methods, including those discussed in this manuscript.
catRAPID does not apply machine learning, but instead constructs an interaction matrix
from known secondary structure and other molecular features. A major limitation of this
approach is its reliance on obsolete genomic data, which is expected to reduce prediction
accuracy.

However, it is important to note that the scope of most LPI prediction algorithms are
limited. Not all methods can predict interactions for novel lncRNA or proteins, and few
methods generalise across species [62,69,71]. This is partly due to the limited availability
of curated training data, with a small number of samples mostly from human or mouse
present in a few databases [63,66,69]. LPI prediction for different protein isoforms is also
not an active area of prediction algorithm development, with only one method having this
functionality. Another limitation observed is that some methods exploit sequence similarity
as an intermediate metric for LPI prediction, particularly methods which formulate LPI as
similarity matrices. While this appears to be effective within the specific training datasets
used by each study, this implicit assumption of similar sequence homology correlating to
interactivity may not always hold, especially across different species [78,79]. At the same



Non-coding RNA 2021, 7, 33 16 of 20

time, we consider that small nucleotide changes in biological molecules can cause major
functional changes, which can potentially cause improperly trained prediction algorithms
to produce misleading results [80].

We also note the limited accessibility of many of these machine learning methods.
Among the methods reviewed that were published within the last five years, many do not
make their source code publicly available and/or are written in proprietary programming
languages such as MATLAB [81]. This restricts reproducibility and prevents usage of
more than half of the methods we reviewed (Table 2). At least partly because of the
computational complexity required, machine learning methods which are well suited to
resolving non-linear variables in high dimensional data have recently become a focus of
the LPI field. Computational methods that both identify and functionally annotate LPI are
limited, leaving a gap in the field.

In contrast to published molecular docking algorithms, only a few machine learning
methods provide active web servers for convenient use by the community, further raising
the barrier for usability by biologists.

5. Future Directions

Computational surveying is not a substitute for experimental validation. However, as
the intention of computational modelling is to generate a subset of the most likely testable
hypotheses for laboratory biologists, we believe that developments in both the laboratory
and computational fields will complement each other. With computational modelling
reducing the quantity of experiments required, and with the experimentally validated data
generated as a result, more efficient algorithms can be developed which further reinforces
the developmental cycle. As a result, biologists interested in LPI will gain access to more
refined tools, allowing them to streamline their experiments.

6. Conclusions

LPI forms a unique layer of gene regulation across many species, and a growing
interest in the field has resulted in the creation and expansion of curated databases as well as
LPI prediction algorithms. Here, we are reviewing some of the established (older than five
years) and recent (within the last five years) LPI prediction approaches as well as databases.
We note four important points. First, there has been a recent shift from conventional
molecular docking algorithms to machine learning methods, which attempt the direct
prediction of LPI from biomolecular sequence identity and higher-level features. This shift
to machine learning is observable across different fields of biology and is likely to continue
with the rising availability of computational infrastructure as well as machine learning
expertise. Secondly, these methods are heavily dependent on a set of curated data across
several databases. Across these databases, a lack of universal standardisation complicates
data merging [82], preventing the community from unlocking the full potential of LPI
data, in contrast to conventional transcriptomics databases such as SRA [83], EBI [84] and
DDBJ [85]. This is in part due to the diversity of assays used to capture the LPI information,
as well as the scope of the databases, which may subsequently bias the machine learning
algorithms developed on these data. Third, there is a distinct lack of methods and databases
which are specifically designed for LPIs’ unique properties, with most having a generic
scope despite LPIs’ biological significance. Finally, it is concerning that more than half of
the recent machine learning methods we surveyed are not reproducible or usable due to
the absence of or restrictions on their source code. However, LPI act as an important but
less-studied regulatory layer and understanding them will provide key context to deepen
our understanding of biological systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ncrna7020033/s1. Table S1: lncRNA-protein data repositories. Seven databases, four with LPI
information and three with RNA motif information, are surveyed. Each database holds information
on at least one combination of nucleic acid and protein interaction. The number of species each
database contains varies widely, from 4–154. Every database contains at least human and mouse data,

https://www.mdpi.com/article/10.3390/ncrna7020033/s1
https://www.mdpi.com/article/10.3390/ncrna7020033/s1
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and has been updated within the past five years, Table S2: LPI database recommendation matrix.
Seven databases are analysed with respect to lncRNAs, namely, NEAT1, MALAT1 and Hotair (well
studied) versus Lassie and MaTAR25 (less explored). Each database includes information on NEAT1,
MALAT1 and Hotair and there are no data available regarding Lassie and MaTAR25.
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