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ABSTRACT

Gene expression atlases have transformed our understanding of the development, composition and

function of human tissues. New technologies promise improved cellular or molecular resolution, and

have led to the identification of new cell types, or better defined cell states. But as new technologies

emerge, information derived on old platforms becomes obsolete. We demonstrate that it is possible to

combine a large number of different profiling experiments summarised from dozens of laboratories and

representing hundreds of donors, to create an integrated molecular map of human tissue. As an example,

we combine 850 samples from 38 platforms to build an integrated atlas of human blood cells. We achieve

robust and unbiased cell type clustering using a variance partitioning method, selecting genes with low

platform bias relative to biological variation. Other than an initial rescaling, no other transformation to the

primary data is applied through batch correction or renormalisation. Additional data, including single-cell

datasets, can be projected for comparison, classification and annotation. The resulting atlas provides a

multi-scaled approach to visualise and analyse the relationships between sets of genes and blood cell

lineages, including the maturation and activation of leukocytes in vivo and in vitro.

In allowing for data integration across hundreds of studies, we address a key reproduciblity challenge

which is faced by any new technology. This allows us to draw on the deep phenotypes and functional

annotations that accompany traditional profiling methods, and provide important context to the high

cellular resolution of single cell profiling. Here, we have implemented the blood atlas in the open access

Stemformatics.org platform, drawing on its extensive collection of curated transcriptome data. The method

is simple, scalable and amenable for rapid deployment in other biological systems or computational

workflows.
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Graphical abstract: Recursive approach to generating a multi-scaled atlas. Top panel: The method

integrates data from all cell types in the Stemformatics database, and shows clear division of samples into

global categories of stromal, pluripotent or blood (inset) cell types. Bottom panel: Integration of only the

blood cell subsets provides a blood atlas. Projection of external samples (green) onto the blood atlas.

Samples are coloured by curated annotations derived from the original studies, and can be viewed at

Stemformatics.org

INTRODUCTION

RNA profiling has been a mainstay descriptor of cellular systems for over two decades, but methods for

measuring transcript abundance have changed dramatically over this period. The field was revolutionised

by microarrays, which allowed simultaneous hybridisation and colourmetric read out for a catalogue

of known genes (Schena et al., 1995). Microarrays were rapidly adopted because they were a fast,

inexpensive and simple way to measure the transcriptional output of a biological system. However,

the need to predefine sequences to be interrogated, and a linear range constrained by the stoichiometry
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of probe and target meant that microarray platforms were rapidly superseded by RNA sequencing

(RNAseq) technologies. Now the most prevalent experimental platform, the range of detected transcripts

is determined by the number of tags counted in a sequencing run and cellular resolution is determined

by the complexity of the profiled population (Cloonan et al., 2008; Forrest et al., 2014). Increased

resolution has escalated rapidly with the advent of single-cell RNA sequencing (scRNAseq) technologies

(Stubbington et al., 2017; Regev et al., 2017). Although some platforms are being refactored and

repurposed, such as the reinvention of hybridisation-based platforms for spatial profiling (Eng et al.,

2019), successive technologies become rapidly redundant, as does the data generated on them.

There is a need to move past information gathering and to move towards build new knowledge frameworks.

Yet technology change drives much recursive data derivation. This represents a massive intellectual and

financial investment by research groups and funders on data that is not adequately being reused, despite

its availability in data repositories (Athar et al., 2018; Lizio et al., 2016). A wealth of information still

resides in data generated on obsolete technologies: these collectively represent a large back catalogues

of carefully phenotyped cells and meticulous experimental systems that can be viewed one study at a

time in platforms such as ArrayExpress (Papatheodorou et al., 2019). A major barrier to data reuse is the

computational capacity to directly integrate and compare successive technologies. While the drivers for

platforms are increased sensitivity and resolution of systems-scale measurements, it remains difficult to

benchmark the new against the old.

Drawing on curated knowledge commons is particularly important when new platforms, such as scRNAseq,

rely on annotations from post-hoc analysis rather than starting with well phenotyped cells. The methods

that are most commonly used to integrate scRNAseq with different platforms rely on projection or

harmonisation of different data types onto a reference scRNAseq data set, and are designed to compare

data in a pairwise manner, so are not easily scaled to include many experimental series (Stuart et al.,

2019). In order to take advantage of the back-catalogue of phenotype-gene expression data, we need new

approaches to combine experimental series from several different platforms and across multiple studies.

Combining RNAseq with the microarray is particularly challenging because data are acquired in a

continuous (microarray) or discrete (RNAseq) manner, and the number of genes captured in a single cell

may be orders of magnitude less than that measured in a population. While it is most common to combine

data from the same microarray platform (e.g. Novershtern et al. (2011) and Hawrylycz et al. (2012)) or

RNAseq (e.g. Frazee et al., 2011; Leek, Johnson, et al., 2012.) combining different types of platforms

is less common (e.g. see also Rohart et al. (2016)). Combining microarrays with RNAseq has been

previously attempted (Thompson et al., 2016; Taroni and Greene, 2017), however, these methods focus on

global normalisation, which has a major impact on stability and scalability when new data is imported.

Many normalisation approaches that account for platform variance require prior identification of sample

groups that are expected to harmonise together. This can introduce class biases, whilst also enforcing
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such strong transformations to data structure that meaningful biological signal is removed - these are

acknowledged problems with batch correction methods such as COMBAT (Johnson et al. (2006)), and

RUV-III (Gagnon-Bartsch and Speed (2012)). Class imbalance is typically encountered when attempting

to merge a small number of data sets. For example, when benchmarking a new sample type against an

existing exemplar the lack of common or appropriate reference samples in the comparison, as well as

prior designation of sample class in the normalisation structure can lead to spurious claims of cell-type

similarity. This could be addressed if new data could be compared to a reference atlas series, but no such

benchmark exists.

Here, we use the Stemformatics catalog (Choi, Pacheco, et al., 2018), which has curated hundreds of

studies, to assess the extent that platform impacts on expression variance for each gene. This challenged

our initial assumption that accounting for batch necessitates an adjustment to every gene expression

value. We selected a subset of genes with low attributable platform variance to compile samples from

many studies, resulting in a reference atlas that reflects cell properties that are independent of mode of

measurement. By including sufficient representation across different cell types we gain insights into the

behaviour of related cell types, whilst also providing a platform for further analysis (e.g. comparisons

between disease and normal states, or between in vitro and in vivo models); and to benchmark new

platforms, including scRNAseq.

MATERIAL AND METHODS

In designing this method, the effect of platform is assumed to be systematic variation, and other batch

effects will be averaged out by the multiple datasets covering the biology. We test these assumptions by

leveraging the large collection of data in Stemformatics which samples different platforms and numerous

cell types. The method introduced here assesses each gene independently to quantify the impact of

experimental platform on that gene’s expression across the whole data series. Genes with low platform

effect are selected for subsequent analyses.

Data Curation

All data used to compile the blood atlas was curated for data quality, and for method of cell isolation and

phenotyping. This metadata is captured in the Stemformatics annotation table (available to download at

https://www.stemformatics.org/atlas/blood), and includes tissue source, antibody profiles where bead or

FACs isolation is used, age of donor (fetal, neonatal, adult). Cells that are profiled directly from tissue are

annotated as an in vivo source; mature cells isolated from blood or bone marrow and cultured for any

period of time are labelled ex vivo; and cells differentiated in the laboratory from hematopoietic progenitor

(typically mobilised peripheral blood, bone marrow or cord blood) or from a pluripotent cell source are

labelled in vitro. This information is available to the viewer in the Stemformatics implementation of the
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blood atlas; primary data sources and publications are linked from every data set page.

Note that in early iterations of the atlas, T-cell subsets isolated using negative selection alone were found

to have a high monocyte contamination when compared to T-cells isolated using flow cytometry gates,

as evaluated by high expression of myeloid marker gene profiles CD14, CD16 and HLADR. Therefore

samples isolated using negative-selection methods were excluded from the atlas unless further purification

and phenotyping was provided by the authors.

The standard Stemformatics processing pipelines were implemented, where data was assessed for linear

range/library size, RNA species, and RNA degradation using 5’/3’ signals where appropriate for the

profiling method. Datasets were excluded if they showed evidence of over-amplification, incomplete

data availability in the public databases GEO or ArrayExpress, incomplete sample metadata or identified

sample-swaps, or where experimental design was confounded. Details of the Stemformatics data curation

pipeline are available (Wells et al., 2013; Choi, Pacheco, et al., 2018).

Data transformation

Combining datasets measured on microarray platforms and RNAseq presents two main difficulties. Firstly,

each platform produces data on a different scale, i.e. they measure abundance in different units. Secondly,

microarrays are composed of gene probes, which are physically different and may be in principle measure

transcripts not represented by alternate array models. These problems are addressed in two stages

presented below, a data transformation stage and a gene filtering stage.

Only genes measurable in all of the available platforms are used to construct the atlas. In this instance we

start with 13,661 genes. Expression values from RNAseq (RPKM) or microarray are transformed to the

same scale. Microarrays have a component of lowly expressed genes at a non-zero value, whereas lowly

expressed genes within RNAseq data can be exactly zero. Thus data structure (discrete vs. continuous)

and sensitivity are quite different. Gene expression for each samples is transformed into rank percentile

values - the highest expression gene is assigned a value 1 and the lowest receives a value 0. Values in

between are uniformly spaced accorded to the rank of the genes expression. Tied values are given the

same rank, which is average of their would-be ranks if they were not tied. Note that this scheme is scalable

because the inclusion of new samples only requires that they are given the same ranked transformation,

avoiding the need to continually renormalise the entire data series. The analysis of the influence of the

rank transformation on the platform effect can be found in the Supplementary Section S1.3.
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Variance modelling and gene selection

Figure 1. The blood atlas is constructed by integrating many independent curated datasets. Top row: the

individuals PCAs of a set of quality-controlled independet datasets. These datasets are measured on a

different platforms. Middle row: genes are rank transformed in order to move the expression distributions

from the different platforms onto the same distribution. However, after running a PCA on the transformed

data a platform clustering is still present. Bottom row: genes are univariately assessed for platform

dependence, and filtered in order to keep only genes with a low fraction of the variance dependent upon

platform. The resulting PCA then shows clustering based biological features.

Principal component analysis (PCA) is performed to collate samples after the percentile transformation,

in order to find reliable global structure (Moon et al., 2017). As in Figure 1 middle row, there is a clear

platform effect in the clustering of the samples, which must be suppressed. We estimate the platform

effect on each gene by fitting a univariate linear model with platform as an independent variable,

y = Xpβp + ε, ε ∼ N(0,σ2
ε )

where y is the expression of a single gene across all samples, Xp indicates membership of the platform
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with coeffecient βp. The variance attributable to platform is defined as

σ
2
p = var(Xpβp),

and the total variance

σ
2
Total = σ

2
p +σ

2
ε .

therefore, the proportion of variance attributable to platform is

σ2
p

σ2
Total

.

In practice this is implemented this using the variance partitioning package Hoffman and Schadt, 2016a,

with a single fixed effect (platform). This model is a fixed effect analysis of variation (ANOVA).

The distribution of variance attributable to platform is shown in Supplementary Figure S1. Approximately

25% of genes examined were seriously impacted by platform, that is more than half of their variance was

attributable to platform. Most genes were not overwhelmed by their method of measurement. In order to

select the genes with minimal dependence upon platform a threshold of 0.2 of the variance of a gene is

required. The PCA was constructed from this gene subset. The resulting PCA is shown in Figure 2 and

effectively removes platform dependence. The process reducing platform dependence when lowering the

threshold is outlined in Supplementary S1.1.1 and Figure S2. All PCA generation was implemented via

the python scikit-learn package (Pedregosa et al., 2011).
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Figure 2. The S4M blood atlas, in which each point is a sample from one of the 38 independent datasets.

There are 3700 genes used in construction of the PCA. The colour indicates the annotated cell type.

Progenitors sit in a region in the corner, while the the myeloid and lymphocyte arms separate out. The

lymphocyte region includes both T and B cells. Dendritic cells sit in the cloud in the center if derived

from an in vivo source, or cord-blood derived DC sit in a group.

Comparison of filtered and non filtered genes based on variance partitioning

To assess the effect of gene filtering in our approach, we partitioned the variance of all genes from the

original data set (13661 genes) and calculated the variance explained by the ‘Class’ (sample source,

progenitor type or cell type) and Platform using a linear mixed model (LMM) as follows.
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Ranks percentiles were transformed using the probit function to fit the normality assumption of a LMM.

For each gene i, i = 1, . . . ,13661, we fitted a linear mixed model of the form

yi = µ + Z(1|Class)
αClass + Z(1|Plat f orm)

αPlat f orm + ε

with variance components αClass ∼ N
(
0, Iσ2

class

)
and αPlat f orm ∼ N

(
0, Iσ2

Plat f orm

)
.

The proportion of variance explained by class effect and platform effect was evaluated with the varian-

cePartition R package (Hoffman and Schadt, 2016b) and genes were ordered according to their estimated

class/platform variance ratio σ̂2
class

σ̂2
Plat f orm

.

Clustering

In order to define regions of cohesive biology and test the stability of the atlas, we applied K-Means

clustering to the principal components, which represent the coordinates of each sample in the 3D space.

It is implemented via the sci-kit learn packages (Pedregosa et al., 2011). To provide a comparison,

agglomerative (bottom up hierarchical) clustering is also implemented via the sci-kit learn package.

Euclidean distance and Ward linkage was used in the Agglomerative algorithm. The two re-sampling

schemes used were a jackknife re-sampling (leave-one-dataset-out), and bootstrap re-sampling performed

500 times.

Both cluster algorithms require the number of clusters, k, as an input parameter. Multiple values of k are

assessed via a stability analysis based on re-sampling (described in Supplementary Section S1.2), and the

optimal k value was chosen as soon as the stability measure started to decrease. The stability measured

used is the H-index, outline in section S1.2.

Projection of External Data

To project new data sets onto the atlas, we transform the data as previously described into percentile

values. Only genes selected in the construction of the original atlas are retained. The original PCA

defines the graph coordinates system defined by principal components. Each component is defined by a

linear combination of genes, with each gene receiving a weight, also known as it’s loading. Applying

these coefficients to new data produces a coordinate in the PCA space for projection. The PCA and

transformation is done with the scikit-learn (Pedregosa et al., 2011).

If genes are missing from the projection data, they are given the lowest rank. These missing genes

often result from slightly different genome annotations: microarrays particularly suffer from outdated

probe annotations resulting in absent or misrepresentation of genes used to construct the atlas. If a

large proportion of genes are missing, this will distort the projection, thus it is advisable to use caution

when applying old or uncommon microarray platforms built on outdated genome versions. Note that
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Stemformatics workflows include alignment of microarray probes to the current genome version for gene

annotation purposes.

Single cell RNAseq expression data

Single cell RNAseq expression data was sourced from Galen et al. (2019). A pseudo-bulk aggregation

method was used to aggregate cells belonging to the same cluster, and where the cluster identity was taken

from the original publication Galen et al. (2019). Each cluster was randomly divided into subgroups such

that each projected ’sample’ had the same number of cells within it, and transcript reads from these cells

were pooled to create a single pseudo-bulk sample for that subgroup. The subgroup has the same identity

as the original group, so might be expected to project into the same region of the atlas. These pseudo-bulk

samples were projected onto the atlas in the same manner as described above.

Implementation and Code Availability

The Blood atlas and accompanying myeloid subset are available as interactive plots at

www.stemformatics.org/atlas/blood and www.stemformatics.org/atlas/imac. These pages contain a num-

ber of features to help users navigate the atlas and perform useful functions:

• Interactive PCA with 3d/2d toggle.

• Colour by sample group, such as progenitor type or cell type.

• Show gene expression profile as a colour gradient.

• View gene expression and colour by sample group side by side.

• Project RNA-Seq dataset hosted at Stemformatics after a search.

• Project one’s own dataset by providing expression and sample files as text files.

• Show and find which samples from which datasets make up the atlas.

• Download relevant data files (rank transformed expression and annotation tables) used by the atlas.

• Download plot in custom size.

Python code which can be used to manipulate the atlas data, to recreate the PCA for example, is available

at https://bitbucket.org/stemformatics/s4m pyramid/src/master/scripts/atlas.py.
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RESULTS

Recursive Application and Unsupervised K-Means clustering upon the blood data

The method relies on several assumptions: (1) the biology of interest can be represented by the expression

of many genes, (2) across platforms, some genes are measured less consistently than others, but there

is a subset of genes where platform contributes substantially less to gene expression variability than the

biology of interest, and therefore (3) the biology of a cell can be meaningfully described at several scales

by identifying subsets of molecular attributes that are selected on cross-platform performance.

The method in its simplest implementation is agnostic to the presence of a biological signal or other

confounding technical variables, but these can be subsequently applied to assess the major sample

groupings. Here, 13661 genes common to 5 platforms were filtered for expression variance across 850

samples taken from 38 blood data sets. 3700 genes with low platform variance were subsequently used

in a PCA to visualise the behaviour of samples relative to the platform or study that they were sampled

from. The outcome of the these steps are shown in Figure 2, where each point represents one sample and

the plots show cohesive grouping of similar cell types drawn from different platforms and independent

studies. Supplementary Figure S3 shows that most genes retained in the atlas explain a high proportion of

variance related to either sample source, progenitor type or cell type compared to platform.

At a global level, the PCA shows clear separation of progenitor types, lymphocytes, and myeloid lineages.

The uniformity and stability of these sample groups was confirmed by K-means cluster analysis (see

Supplementary Tables S2 and Table S1). The tables S2 shows results of the stability analysis performed

over a range of k for the K-Means and Agglomerative algorithms. The most stable k, as measured by the

median of the H-index of the clusters, is highlighted in yellow. In the top right hand column of 3 shows

the most stable clustering on all of the blood (including myeloid, lymphocyte and progenitors) is run with

k = 6. The annotated cell identities in Table S1 show that cluster 1, in the bottom corner, contains the

progenitors, Cluster 2 captures lymphocytes and contains the majority of B, T and NK cells. The myeloid

lineage is split over a three distinct clusters: Cluster 4 containing circulating monocytes and granulocytes,

Cluster 5 predominantly cultured monocytes and tissue-resident macrophages, and Cluster 6 containing

dendritic cells.

The large number of different myeloid cell types drives a resolution favouring these subsets. It follows

that the resolution of biologically interesting subtypes requires representation from several data sets,

and may not resolve if the major biological signal is driven by cell classes that are disproportionately

represented. We address this using recursive application of the method, on subsets of samples captured

in specific regions of the original graph. This allows for ever finer detail and identification of nuanced

cell phenotypes, with the limiting factor being the availability of enough data for the biological subset of

interest. By using a recursive approach, we view the atlas as a series of blood hierarchies, starting with
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the most broad categorisation, and moving through smaller sample groupings to find more detailed cell

types. For example, in order to resolve the lymphocytes better, the lymphocytes and myeloid arms were

isolated from each other and the technique repeated on each. These separate graphs are shown in Figure 3.

The PCA on the 728 myeloid samples is performed from the clusters containing progenitors, circulating

monocytes and granulocytes, and dendritic cells (and approximately 3600 genes). We further observed

differences between circulating and cultured monocytes, naive or activated states, and distinctions between

primary or in vitro derived cells (Figure 3 Myeloid). In contrast the PCA on the lymphocytes only include

255 samples from clusters containing lymphocytes and progenitors. The lower number of samples makes

it more difficult to resolve structure and results in only approximately 2400 genes being included. Despite

the lower number of samples, Figure 3 Lymphocyte shows evident separation of the T and B Cells along

the z-axis, as their difference is now strong enough to exceed the platform effect in our gene filter step,

however the atlas lacks sufficient samples describing B-cell maturation or identifying phenotypically

distinct T-cell classes. At each iteration, a robust global clustering is found for that scale, and only that

scale. By stitching these together, the true multiscale nature of the myeloid arm of the blood hierarchy

emerges, and more molecular detail is revealed. The two examples provided here can be further explored

in the blood atlas (https://www.stemformatics.org/atlas/blood) and the myeloid subsets in the iMAC atlas

(https://www.stemformatics.org/atlas/imac) (Rajab et al., 2019).
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Figure 3. These panels show the results of repeated application of gene filtering and PCA upon the

annotated blood samples in S4M. Each point is a sample, with colour indicative of annotated cell type

(left column), or cluster identity (right column). The top left shows application to all blood samples as in

Figure 2, while the top right shows the robust clusters defined upon these coordinates. The identities of

these clusters are in Supplementary Table S1. Their highlighted colours are propagated to the middle and

bottom panels to display the behaviour of these clusters subsequent to recursive application. The middle

row shows the PCA when variance modelling and filtering is applied only to the myeloid lineage clusters

(2,3,4,5 and 6). The myeloid PCA shows the clusters defining monocyte, macrophages and dendritic cells

separating into distinct regions. The bottom row shows the variance modelling, filtering and PCA upon

the lymphoid lineage clusters (1 and 3). Now the increased resolution splits the lymphocyte cluster, 1,

into more detailed subsets containing either T or B cells.
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Stability

While the biological grouping in the atlas are visually compelling, in order to formally test the stability of

the results we ran two types of clustering algorithm on the merged data - the K-Means algorithm and the

Agglomerative (bottom-up hierarchical) algorithm. For each approach, we perturbed the underlying data

with two re-sampling schemes and measured the stability of cluster membership using the H-index of the

Jaccard similarity coefficient (e.g. Shannon et al., 2016). Both algorithms, K-Means and Agglomerative,

require the number of clusters as an input parameter, and as this number is not known a priori, we test

multiple values. The Supplementary Tables S2 and S3 show the results of the jackknife and bootstrap

resampling carried out upon clusters found in the respective atlas of each row in 3. These tables list the

median ± the maximum and minimum of the H-Index calculated on all clusters after re-sampling. The

results of jackknife and bootstrap resampling are qualitatively very similar.

Our clustering defines biological groups by assigning class membership to samples based on their

proximity in PCA coordinates. This is our preferred measure of structure because the principal components

can (and may be expected to) change under random re-sampling. Groupings of samples ought to be

preserved, regardless of coordinate system, if indeed the biological signal is stable and the relative

proximities are conserved. If the clustering structure is genuine, stability can be expected up until the

point where too many clusters are demanded, after which clusters will be artificially grouped and unstable.

We can also expect that the different algorithms should produce similar results if our atlas is stable.

In Table S2 top row, algorithms with cluster numbers up to 6 performed the best. For the both the K-Means

and Agglomerative algorithms, the median values in this range are about ∼0.9. This indicates that when

re-sampling, the overall structure of the atlas is well preserved. Results for re-sampling the myeloid and

lymphoid arms are shown in the middle and bottom rows of Table S2. The myeloid atlas is stable up

until having approximately 5 clusters, at which point they have a high median H-indices of ∼0.9. The

lymphocyte atlas is most stable with 4 clusters, but only has median H-index of 0.79 (K-Means) and

0.75 (Agglomerative), and is less stable than other graphs for all of the cluster numbers. This reflects the

relatively smaller representation of lymphocyte samples within our data.

We also evaluated the variation of the set of selected genes under re-sampling for the atlas containing all

of the blood. Over the 500 bootstrapped iterations the median percentage of genes in common with the

true data is 93% , with a minimum of 86% and maximum of %96. For the leave-one-out re-samplings the

median similarity is 97%, with a maximum of 99% and minimum of 88%. These indicate the set of genes

used to generate the Atlas is also stable to perturbations.
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External data can be projected onto the atlas

Blood AtlasHaemopedia Galen, et. al.

aggregate

T Cells

Macrophages

B Cells

Monocytes

HSC

HSC

Monocytes

GMP

GMP

Figure 4. The projection of blood data from Haemosphere (https://www.haemosphere.org/) and Galen

et al., 2019. The location of the projected data is consistent with the Blood Atlas

Allowing researchers to compare cell types is an important use-case for any robust transcriptional atlas

which serves as a reference. This could be to validate or benchmark samples against the reference, to

hypothesise about new cell types, or to find key regulators of differentiation. We have taken a simple

approach of linearly projecting new data points onto the PCA space of the Blood Atlas for this type of

comparison - as we allow users of the website to project their own data this way, a simple approach that

users can easily understand is advantageous. We tested projections with a range of different datasets and

data types that contain blood samples, to see if they produced expected results. The projections with

bulk RNAseq datasets were highly reproducible for both myeloid and lymphocyte arms (Figure 4, Choi,

Baldwin, et al. (2018)). For scRNA-Seq, simply projecting individual cells did not work very well, due

to the fundamental difference in the distribution of values in the scRNAseq data compared to platforms.

However, we have found that aggregating the samples to simulate pseudo-bulk samples did work well, as

shown by Figure 4, (Galen et al., 2019).

For samples which are transcriptionally very different to blood cells, such as mesenchymal stromal cells,

fibroblasts or neurons, projected coordinates are in the central region of the PCA (Figure S5). This region

corresponds to coordinates where samples sit far away from all regions of the PCA. The web page contains

some information about projections for the users, including a caution about interpreting a projection in

this region, as well as information about the formats of files to use.
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DISCUSSION

Gene filtering is an alternative to supervised normalisation

Transcriptional profiling was once a discovery platform used to find new molecules in well-established

experimental systems (Graaf et al., 2016). It is also commonly used to assess cell composition of tissues,

or benchmark new cell models by virtue of shared molecular patterns (Douvaras et al., 2017). Typically,

researchers will ”borrow” samples from other data sets, for example to benchmark or compare to their

own experimental system to a previously published standard. Potential biases are introduced by the

choice of reference, and this is further compounded by batch correction methods that require the analyst

to make prior assumptions about the appropriate categorisation of samples. Methods that require prior

determination of biological class force analysts to make a call about which variables are most important

to promote or subtract, or how many biological classes are expected in the merged group. This may be

desirable under some circumstances, but arguably less desirable when large data series are compiled,

particularly if the normalisation approach inadvertently suppresses important variation across that data

series. The addition of new data may require renormalisation of the entire series, limiting the number of

comparisons. Without a standardised resource each study’s comparator is different to the next, yet such

approaches are expected to test the reproduciblity of individual studies. Here we show that the projection

of new data onto a reference transcriptome atlas offers a straight forward solution.

In the example described here, the blood cell hierarchy, we demonstrate that when combining a large

number of microarray and RNAseq data sets, a basic transformation and gene filter step is all that is

required to extract prominent biological features. Supervised batch normalisation methods are very useful

when applied to samples with well described properties, and when the split between sample class and

technical batch is well balanced. Too often, however, batch and biology is confounded (reviewed in Leek,

Scharpf, et al., 2010). Supervised normalisation seeks to rescue as many expression points (genes or

probes) as possible, so applies a weighted adjustment across the entire gene set. Here we demonstrate that

across dozens of data sets, representing hundreds of samples, the variability in gene expression attributable

to platform profoundly impacts some, but not all genes. Therefore a weighted adjustment of expression

where little prior batch effect is present has the potential to obscure genuine biology. Our approach

does not seek to retain all expression measurements but rather constructs the atlas graph only with those

expression values that escape a strong batch influence. This is achieved by taking many independent

data sets, with minimal processing, to allow the dominant technical, experimental or biological trends to

emerge from the combined data series. The resulting blood atlas demonstrably groups cells with common

phenotypic attributes in an unbiased manner, and at several scales of resolution of cell type. Minimal

processing also easily lends itself to an unsupervised method, which helps prevent over-fitting of sample

classes or the biases associated with a restricted reference set.
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An alternative method that is gaining attention in the integration of single cell datasets is canonical

correlation analysis (CCA) (Butler et al., 2018). This method similarly uses a reduced feature selection

approach, using only those variables (e.g. genes) that share a linear correlation structure across several

data sets, to combine pairs of different experiments into an integrated series. CCA works best when

there are a large number of data points in common between the samples to be combined. In contrast,

we are combining many datasets of small sample size, such that any pair of individual datasets may

lack overlapping cell classes, and in practise often are focused on one particular cell type, such as the

humanised mouse models assessing tissue residency of dendritic cells (Haniffa et al., 2012) or an in-depth

exploration of natural killer cell progenitors in fetal and adult tissues (Renoux et al., 2015). The correlation

between genes and cell types is subsequently explored in using PCA.

The question of what is an appropriate normalisation must be assessed in light of the analysis question

to be conducted. While there is clearly no ’one-size-fits-all’ approach, we acknowledge that there are

some limitations to our approach. Simplifying data on a ranked scale removes information about the

scale of difference between two points. Consequently some information on gene-gene correlations is lost,

although we do allow genes with the same value to keep the same rank. It is apparent from Supplementary

section S1.3 that when combining data from platforms with different expression distributions, the benefits

of performing the rank percentile transform outweighs the cons. By applying a gene filtering method,

some biologically relevant genes will be removed from the analysis, and this may make it harder for a

user to assess sample classes using a marker-based approach. By selecting genes with a low fraction of

variance due to platform, we may we may lose resolution between some biological classes (insofar as

variance indicates biological informativeness). Nevertheless we see in Figure 2 that enough information

remains in order to extract a good deal of biological structure, and to find meaningful genes that are

driving sample clustering. We also acknowledge that using PCA to review sample behaviour does not

allow for examination of non linear relationships between genes or samples. Nevertheless, the advantages

of rescaling and recursive filtering are clearly demonstrated here, and the resulting expression matrix

would be suitable for other graphing or clustering approaches.

Recursive application to reveal fine-grained or coarse-grained atlas resolution

Blood is arguably the most accessible, and therefore the most comprehensively studied human tissue. The

earliest attempts at finding unbiased molecular markers for different cell types came from the ”Cluster

of Differentiation” (CD) leukocyte markers (Bernard et al., 1984). In a community effort analogous to

the atlas activities today, discovery of CD markers required over 50 laboratories undertaking an antibody

screen against panels of blood cells without knowing what the antigen expressed by the cell is, nor what it

does - the markers were adopted if they were able to reliably partition different cell types. CD markers

are still used today - for example CD14 is a classical marker of monocytes and macrophages (Wright

et al., 1990); CD4 and CD8 (Madakamutil et al., 2004; Sawada et al., 1994) have been adopted into
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the naming convention of T-cell subsets. Nevertheless, very few of these markers are restricted to one

cell type (Maddon et al., 1987), and more typically combinations of markers are required to categorise

leukocytes.

Several atlas approaches were proposed to identify molecular markers of blood cell subtypes - these

include the microarray profiles in Haematlas from the Bloodomics consortium (Watkins et al., 2009) and

Haemopedia which compares RNAseq profiles between mouse and man (Choi, Baldwin, et al., 2018).

While useful, most focus on profiling a small number of cell types in a large number of donors (e.g. QTL

studies of monocyte gene expression) or a large number of well characterised cell types in a small number

of donors (Novershtern et al., 2011; Prasad et al., 2014). However direct comparison between these

projects is very difficult because of discrepancies in the way data is captured, and this is the problem

addressed by the integrated atlas approach proposed here.

When considering what are the prominent biological features of any collection of data it is important

to remember that ‘prominent’ is relative. The difference between lymphocytes and myeloid cells may

be prominent when looking at blood cells only, but when compared to stem or stromal cells, it could be

reasonably said that lymphoid and myeloid cells look very similar. The recursive approach is crucial to

our analysis - at each level, the dominant global structure is retrieved and used to inform the next iteration,

thus avoiding to impose global axis on all cells which may not reflect small scale structure. Therefore, the

recursive approach is an intuitive way to map the cell landscape.

The multi-scaled nature of the biology highlights a second important limitation to our approach: the

necessity for large amounts of diverse data, covering different cell types and experimental platforms.

Subsampling regions of the atlas and applying a new round of gene filtering is a recursive approach

that allows users to scale between global (all samples) or local cell comparisons. This extracts the most

dominant structure at each resolution level, however with fewer samples we also approach the limits of

our technique, and the results may become less robust. This can be observed in the lymphocyte arm of the

atlas, which in the current iteration are represented by only a few data sets 2. The resolution of these cells

is adequate at lineage level (B-cells vs T-cells) but with only 255 samples, it does not resolve subtypes of

T Cells, such as CD4 or CD8. In contrast, resolution between different myeloid subsets is very high, and

the emergent properties of the iMAC atlas highlight the impact of experimental handling or derivation

method on the type of macrophage or DC studied.

Data projections and integration of single cell platforms

Given the advent and popularity now of single cell sequencing, future iterations will see the inclusion

of single cell data. Deeper molecular characterisation of individual cells could be expected to better

resolve functionally discrete populations, as well as provide new candidate markers for prospective cell

isolation and characterisation. With the blood atlas method, we aim to provide a reference benchmark
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that evaluates past transcriptomic data through a novel and relatively simple integration approach, and

use this for comparisons to new data types, including scRNAseq of blood cells from different tissues. In

the current iteration, we show the usefulness of projection of scRNA data onto the atlas, particularly for

identification of blood cell types and annotation of scRNAseq clusters.

While we use the graph space obtained by the combined atlas series to project new data into the predefined

state space, it’s important to note that we are not using this to ’tune’ new data sets into this space. Other

graph smoothing methods have been described (Stuart et al., 2019; Weinreb et al., 2020), and particularly

applied to the integration of single cell batches, where ’harmonisation’ of the combined data is achieved

by iterative weighting of gene expression in the introduced samples. Here, data set projections are used

first to the reproduciblity of cell groups and group annotations using external, independent data. Secondly,

projections of single cell expression data into prior annotated groups is used to lift atlas annotations over

to the single cell experiment.

Projection strategies may provide additional benefits. Since we rank transform each sample before

projection, each sample is treated independently to assess its similarity to the atlas cell types. Hence

insights can be gained from data sets where batch effects are already confounding interpretation of data in

the original experimental series - for example, where each sample class is obtained in a separate technical

batch. In this instance, projection of each set of samples onto a reference atlas allows for examination

of the experimental groups against an unbiased set of relevant cell classes. Projections may also inform

trajectory analyses for scRNAseq datasets, without having to derive these trajectories de novo. For

example, plotting single cell clusters from a differentiation series onto the blood atlas will allow better

identification of haematopoietic cell lineages, or even suggest new pathways of differentiation, especially

in cases where scRNAseq data come from cell types with low coverage within the Blood Atlas.

CONCLUSION

A shift from data collection on successive technologies, to integrated analyses across series of data offers

an opportunity to view biological collections across a hierarchy of perspectives and information. In the

example given here, we recapitulate the haemopoietic systems by combining 38 datasets, each describing

detailed aspect of one part of that system in a small number of donors. The result is a multi-scaled tool

to visualise and analyse the transcriptional relationships in the blood cell lineage. Recursive application

of the method was demonstrated by the general categorisation seen in whole blood to the identification

of specific myeloid cell types and activation states in the iMAC atlas. The projection of additional data

onto the atlas, provides a tool for researchers to compare their own data to a robust reference collection.

Projection of single cell data provides definitive annotations of blood cell clusters without prior assignment

of marker genes in the scRNA-seq data. Implementation of the blood and iMAC atlases provides a simple

web-based tool in the Stemformatics platform.
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S1 SUPPLEMENTARY METHOD

S1.1 Platform Effect Analysis and Gene Selection

S1.1.1 Choosing the platform-variance threshold

The appropriate value of the threshold is set by assessing the platform-batch effect after progressively

lowering the threshold. A PCA using a threshold of 0.2 is shown in Figure S4 D. Compared to Figure

S4 A the effect of platform is effectively suppressed and samples now cluster according to the annotated

biological type. As the threshold is lowered, fewer genes pass the cut and are used to generate the

PCA graphs. However, once platform is removed there is a range of thresholds for which the biological

structure remains stable.

The effect of lowering the threshold is shown in Figures S4 and S2. Figure S4 depicts the changing PCA

as the threshold is lowered from 0.8 down to 0.2. As this happens, it can be easily seen that the platforms,

initially very separate in A, come to intermingle by D. This process is shown again in Figure S2. As

we lower the threshold (moving down the y-axis), we measure the platform dependence of each of the

first 10 PCA components independently using the Kruskal-Wallis H (KWH) Test (as implemented in

Jones et al., 2001). This test quantifies the difference in median between the different populations. Darker

boxes indicate less platform dependence, and vice-versa. Lowering the threshold has the effect of a)

firstly moving the main platform dependence from component 1 to lower components, and b) eventually

suppressing the effect over all components. This agrees with the visual inspection of the PCA after

filtering genes with a range of thresholds. KWH Test values of ∼0.2 are present on the first 3 principal

components when the threshold reaches ≤ 0.2. Empically, it is a good indicator that the platform effect is

absent.

The platforms we use are Affymetrix HuGene and U133 Plus 2, RNA sequencing of any version, Illumina

V4, Illumina V2 microarrays. These are the platforms with blood related datasets spanning several

subtypes. Note that different versions of a platform, e.g. HuGene version 1 and 2, tend to cluster together

as if they were one. The difference between them is small compared to the effect between the other

platform types, and is also small compared to the effect of the biology. These differing versions are placed

in the same category and treated as one platform. That leads to five platforms categories listed above.

S1.2 Stability and H-Index

Assessment of the stability of the gene selection using two random sampling techniques - bootstrap

resampling directly upon the samples and leave-one-out resampling applied to datasets. Bootstrap

resampling was performed 500 times. Multiple clustering methods were applied, in order to avoid results

being dependent upon an idiosyncrasy of one algorithm. Our goal is not to assess clustering algorithms,
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but rather provide evidence that the clustering structure present in the PCA is stable. Clustering is

performing by KMeans and Hierarchical clustering implemented in cite Sklearn.

The H-Index (as described in (Shannon et al., 2016)) was calculated for each cluster, with the base case

being the data with no resampling. At each iteration the process is repeated starting from the calculation

of platform dependence: the univariate linear model calculated, thresholded with a value of 0.2 to select a

subset of genes, PCA generated, and clustering algorithm applied. Tables S2 and S3 show the results for a

selection of different clustering algorithms, and number of clusters. Results in the tables below show, for

each combination of clustering algorithm and number of classes, the median H-index across all clusters,

and the maximum and minimum of the H-index across all clusters.

We also can consider the stability of genes included under resampling. For each resample iteration, we

calculated the percentage of genes that are still pass the cut.

Datasets are generated under different conditions and platforms, and in this way can be considered a single

data point. Thus, resampling can be performed on either individual samples or datasets. This is further

complicated as some datasets contribute a large number of samples. We list the results of leave-one-out

resampling on datasets, followed by bootstrapping the samples, as bootstrapping datasets can have an

extremely large effect on the underlying composition of the data.

Non-Blood Samples

Non-blood related samples were taken from publicly available data in Stemformatics. It was obtained by

searching for sample types containing any one of the following terms: iPSC, embryonic, mesenchymal,

mesoderm, fibroblast, pluripotent, neuron, astrocyte, adipocyte, melanocyte, epithelium, neural, endoderm,

cardiomyocyte. The are a couple of iPSC derived blood datasets, which were excluded. The results of

this search was 2093 samples from 140 datasets. The Stemformatics dataset id, the title of the relevant

publication and the number of samples drawn from each dataset is listed in the table non blood datasets.tsv.

S1.3 Rank transformation corrects for platform variation between studies

The percentile rank transformation adopted in this study is advantageous as a non-parametric technique

that does not require any specification of the potential batch sources or the experimental study design.

This transformation is thus appropriate for any unknown confounding factor that was not reported in a

given study, and can be considered as a normalisation technique in our atlas to enable between-study

comparisons.

We simulated studies with 1000 samples, 10000 genes for 10 cell types and 4 batches. Amongst the 10000

genes, 100 to 200 genes were simulated as differentially expressed with a cell type effect. Count data

were generated using negative binominal distributions with genewise specified dispersion trend described
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by Law et al. (2014). Batch effects were then included in all genes by applying 4 different non-linear

monotonic functions to the simulated data. Figure S6 shows that the percentile rank transformation

outperforms two popular batch effect correction methods, limma and Combat (Ritchie et al., 2015;

Johnson et al., 2006).
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Figure S1. The distribution of the fraction of variance attributable to platform for the blood data. It is

weighted towards low ratios, indicating that biological variation forms a major part of the signal.
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Figure S2. The change in value of the Kruskal-Wallis H Test for the first 10 components of the Blood

PCA, as the platform-variance threshold is decreased. Lower values for the KWH test indicate less

dependence of the component upon platform. Lowering the threshold has the effect of both moving

platform-related components to lower components, and decreasing the overall dependence upon platform.
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Figure S3. Proportion of variance explained by Platform, Residuals and either A: Sample Source, B:

Progenitor type or C: Cell type assessed with a linear mixed model. Each gene is depicted as a vertical

line on the x-axis, and genes are ranked according to the ratio Sample Source / Platform explained

variance. Dark gray vertical lines indicate genes that were retained in the filtered data set.
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C D

Figure S4. The PCA coordinates after filtering genes with a decreasing platform variance fraction

threshold. A, the threshold is 0.8, B=0.6, C=0.4, D=0.2. As the threshold is lowered platform, initially

separate, begin to merge.
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Figure S5. The projection of non-blood data (induced pluripotent stem cells, mesenchymal stem cells,

fibroblasts, neurons) onto the Atlas. They are displayed as green crosses. They sit in a region low on

component 2, a region not populated by either by the blood samples used to generate the atlas.
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Figure S6. Comparisons of batch effect correction approaches on the simulated study described in

Supplementary section S1.3. using t-SNE. Ten cell types are indicated by colors. (A): original count data

include a batch effect across 4 platforms. (B): correction for platform effect with limma followed by

voom transformation, (C): Combat and (D): percentile rank transformation.
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SUPPLEMENTARY TABLES

Cluster

Number

Cluster Name Total

Samples

Cell Type Identity

1 Lymphocyte cluster 120 B Cell (30/30), natural killer cell (15/15), T Cell

(72/72), natural killer progenitor (3/4)

2 Circulating Mono-

cyte and Granulocyte

126 monocyte (111/284), granulocyte (10/10), neu-

trophil (4/4), macrophage (1/104)

3 Progenitor 146 MK (4/4), erythrocyte (4/7), HPC (91/92), CMP

(12/12) GMP (13/14), LP (22/25)

4 Macrophage 275 monocyte (173/284), macrophage (92/104), den-

dritic cell (10/172)

5 Dendritic Cell 106 dendritic cell (105/172), macrophage (1/104)

6 Mixed 77 dendritic cell (57/172), microglia (10/25), progeni-

tor (10/96)

Table S1. List of clusters and annotations of the samples that belong to each clusters.
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Table S2. Results of the jackknife resampling stability analysis. Most stable number of clusters, the

median H index, and their maximum/minimum H index as the superscript/subscript.
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Table S3. Results of the bootstrap resampling stability analysis. Most stable number of clusters, the

median H index, and their maximum/minimum H index as the superscript/subscript.
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